M ar 2 00 7 Langevin Approach to Fractional Diffusion Equations including Inertial Effects

نویسندگان

  • S. Eule
  • F. Jenko
چکیده

In recent years, several fractional generalizations of the usual Kramers-Fokker-Planck equation have been presented. Using an idea of Fogedby [H., we show how these equations are related to Langevin equations via the procedure of subor-dination. Introduction. – Some 70 years ago, Kramers [1] considered the motion of a Brownian particle subject to a space-dependent force F(x) per unit mass. His goal was to compute the joint probability distribution f (x, u, t) for finding a particle at time t at the position x with the velocity u. For this quantity he could derive the famous Kramers-Fokker-Planck (KFP) equation [2, 3]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Langevin approach to fractional diffusion equations including inertial effects.

In recent years, several fractional generalizations of the usual Kramers-Fokker-Planck equation have been presented. Using an idea of Fogedby (Fogedby, H. C. Phys. Rev. E 1994, 50, 041103), we show how these equations are related to Langevin equations via the procedure of subordination.

متن کامل

A ug 2 00 9 Stochastic generalized fractional HP equations and applications

In this paper we established the condition for a curve to satisfy stochastic generalized fractional HP (Hamilton-Pontryagin) equations. These equations are described using Itô integral. We have also considered the case of stochastic generalized fractional Hamiltonian equations, for a hyperregular Lagrange function. From the stochastic generalized fractional Hamiltonian equations, Langevin gener...

متن کامل

An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation

Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...

متن کامل

Fractional and fractal derivatives modeling of turbulence

This study makes the first attempt to use the 2/3-order fractional Laplacian modeling of enhanced diffusing movements of random turbulent particle resulting from nonlinear inertial interactions. A combined effect of the inertial interactions and the molecule Brownian diffusivities is found to be the bi-fractal mechanism behind multifractal scaling in the inertial range of scales of moderate Rey...

متن کامل

Distributed-order diffusion equations and multifractality: Models and solutions.

We study distributed-order time fractional diffusion equations characterized by multifractal memory kernels, in contrast to the simple power-law kernel of common time fractional diffusion equations. Based on the physical approach to anomalous diffusion provided by the seminal Scher-Montroll-Weiss continuous time random walk, we analyze both natural and modified-form distributed-order time fract...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008